16.

17.

18.

11.3

11.3.1

Bt.Trees 551

A B*-tree of order m is a search tree that either is empty or satisfies the following
properties:

(@) The root node has at least two and at most 2[(2m — 2)/3| + | children.

(b) The remaining internal nodes have at most m and at least [(2m — 1)/3] chil-
dren each.

{c) All external nodes are on the same level.

For a B*-tree of order m that contains N elements, show that if x = [(2m ~ 1)/3],
then

(a) the height, #, of the B*-tree satisfies £ <1 + log, {(N + 1)/2}

(b) the number of nodes p in the B*-tree satisifies p <1+ (¥~ 1}/(x — 1)

What is the average number of splits per insert if a B*-tree is built up starting from
an empty B*-tree?

Using the splitting technique of Exercise 15, write an algorithm to insert a new
element, x, into a B*-tree of order m. How many disk accesses are made in the
worst case and on the average? Assume that the B-tree was initially of depth / and

that it
is maintained on a disk. Each access retrieves or writes one node.

Write an algorithm to delete the element whose key is x from a B*-tree of order m,
What is the maximum number of accesses needed to delete from a B*-tree of
depth {7 Make the same assumptions as in Exercise 17.

B*.TREES

Definition

ABTtree isa close cousin of the B-tree. The essential differences are:

0y

2

In a B*-tree we have two types of nodes—index and data. The index nodes of a
BY-tree correspond to the internal nodes of a B-tree while the data nodes
correspond to external nodes. The index nodes store keys (not elements) and
pointers and the data nodes store elements (together with their keys but no
pointers).

The data nodes are linked together, in left to right order, to form a doubly linked
list.

Figure 11.11 gives an example B*-trec of order 3. The data nodes are shaded

while the index nodes are not. Notice that the index nodes form a 2-3 tree whose height
is 2. The capacity of a data node need not be the same as that of an index node. In Figure

11.11 each data node can hold 3 elements while each index node can hold 2 keys,

A

20 1 40

[10 30 70 | 80

Figure 11.11: A B*-tree of order 3

Definition: A B -tree of order m is a tree that either is empty or satisfies the following
properties:

(1} All data nodes are at the same level and are leaves. Data nodes contain elements

only.

(2) The index nodes define a B-tree of order m; each index node has keys but not ele-
ments,

(3) Let

n, AO, (KlsAl)s (KZsAZ)’ T (Kn,An)

where the A;, 0 <i <n < m, are pointers to subtrees, and the K;, 1 <i <n <m, are

. keys be the format of some index node. Let Ky = —oo and K, | = «. All elements
in the subtree A; have key less than K;,; and greater than or equal to K;, 0<i <n.
[l

11.32 Searching a B*-Tree

B*-trees support two types of searches—— exact match and range. To search the tree of
Figure 11.11 for the element whose key is 32, we begin at the root A, which is an index
node. From the definition of a B*-tree we know that all elements in the left subtree of A
(i.e., the subtree whose root is B) have a key smaller than 20; those in the subtree with

B*-Trees 553

root C have keys = 20 and < 40; and those in the subtree with root D have keys 2 40. So,
the search moves to the index node C. Since the search key is 2 30, the search moves
from C to the data node that contains the elements with keys 32 and 36. This data node is
searched and the desired element reported. Program 11.4 gives a high-level description
of the algorithm to search a B -tree.

/* search a B* -tree for an element with key x,
return the element if found, return NULL otherwise */
if the tree is empty return NULL;
Ky =—-MAXKEY;
for (*p = root; p is an index node; p = A;)

{
Let p have the format n, A,, (K, 41), -+, (K,, A,);
K,.1 = MAXKEY;
Determine i such that K; <x < K;,;

}

/* search the data node p */

Search p for an element E with key x;
if such an element is found return E
else return NULL;

Program 11.4: Searching a B*-tree

To search for all elements with keys in the range [16, 70], we proceed as in an
exact match search for the start, 16, of the range. This gets us to the second data node in
Figure 11.11. From here, we march down (rightward) the doubly linked list of data nodes
until we reach a data node that has an element whose key exceeds the end, 70, of the
search range (or until we reach the end of the list). In our example, 4 additional data
nodes are examined. All examined data nodes other than the first and last contain at least
one element that is in the search range.

11.3.3 Insertion into a B -Tree

An important difference between inserting into a B-tree and inserting into a B -tree is
how we handle the splitting of a data node. When a data node becomes overfull, half the
elements (those with the largest keys) are moved into a new node; the key of the smallest
element so moved together with a pointer to the newly created data node are inserted
into the parent index node (if any) using the insertion procedure for a B-tree. The split-

ting of an index node is identical to the splitting of an internal node of a B-tree.
Consider inserting an element with kev 77 intn the R+-m=,e of Fionre 11 1} We

first search for this key. The search gets us to the data node that is the left child of C.
Since this data node contains no element with key 27 and since this data node isn’t full,
we insert the new element as the third element in this data node. Next, consider the
insertion of an element with key 14. The search for 14 gets us to the second data node,
which is full. Symbolically inserting the new element into this full node results in an
overfull node with the key sequence 12, 14, 16, 18. The overfull node is split into two by
moving the largest half of the elements (those with keys 16 and 18) into a new data node,
which is then inserted into the doubly linked list of data nodes. The smallest key, 16, in
this new data node together with a pointer to the new data node are inserted in the parent
index node B to get the configuration of Figure 11.12 (a).

Finally, consider inserting an element with key 86 into the B*-tree of Figure i1.12
(2). The search for 86 gets us to the rightmost data node, which is full. Symbolically
inserting the new element into this node results in the key sequence 80, 82, 84, 86. Split-
ting the overfull data node creates a new data node with the elements whose keys are 84
and 86. The new data node is inserted into the doubly linked list of data nodes. Then we
insert the key 84 and a pointer to the new data node into the parent index node D, which
becomes overfull. The overfull D is split using Eq. 11.5. The 84 along with two of the 4
subtrees of the overfull D are moved into a new index node E and the 80 together with a
pointer to E inserted into the parent A of D. This causes A to become overfull. The over-
full A is split using Eq. 11.5 and we get a new index node F that has the key 80 and 2 of
the 4 subtrees of the overfull A, The key 40 together with pointers to A and F form the
new root of the B™ -tree (Figure 11.12 ¢b)).

11.3.4 Deletion from a B¥-Tree

Since elements are stored only in the leaves of a B+-tree, we need concern ourselves
only with deletion from a leaf (recall that in the case of a B-tree we had to transform a
deletion from a non-leaf into a de]enon from a leaf; this case doesn’t arise for B -trees)
Since the index nodes of a B*-tree form a B- tree, a non-root index node is deficient
when it has fewer than [m /2] - 1 keys and a root index node is deficient when it has no
key. When is a data node deficient? The definition of a BT -tree doesn’t specify a
minimum occupancy for a data node. However, we may get some guidance from our
algorithm to insert an element. Following the split of an overfull data node, the original
data node as well as the new one cach have at least [c /2] elements, where ¢ is the capa-
city of a data node. So, except when a data node is the root of the B -tree, its occupancy
is at least [¢ /2]. We shall say that a non-root data node is deficient iff it has fewer than
[c /2] elements; a root data node is deficient iff it is empty.

We illustrate the deletion process by an example. Consider the B*-tree of Figure
11.11. The capacity ¢ of a data node is 3. So, a non-root data node is deficient iff it has
fewer than 2 elements. To delete the element whose key is 40, we first search for the ele-
ment to be deleted. This element is found in the data node that is the left child of the

B*t-Trees 555

10

16

20

20 |40

(a) 14 inserted

G

40

30

70

_ D
70 80
F
80
D E
84

(b) 86 inserted

Figure 11.12: Insertion into the B*-tree of Figure 11.11

index node D. Following the deletion of the element with key 40, the occupancy of this
data node becomes 2. So, the data node isn’t deficient and we need merely write the
modified data node to disk (assuming the B¥-tree is disk resident) and we are done,
Notice that when the deletion of an element doesn’t result in a deficient data node, no

index node is changed.

Next consider the deletion of the element whose key is 71 from the B*-tree of

Figure 11.11. This element is found in the middle child of D. Following its deletion, the
middle child of D becomes deficient. We check either its nearest right or nearest left
sibling and determine whether the checked sibling has more than the required minimum
number ([c /2]) of elements. Suppose we check the nearest right sibling, which has the
key sequence 80, 82, 84. Since this node has an excess element, we borrow the smallest
and update the in-between key in the parent D from 80 to that of the smallest remaining
element in the right sibling, 82. Figure 11.13 (a) shows the resuli. For a disk-resident
B+-tree, this deletion would require us to write out one altered index node () and two
altered data nodes. For data nodes with larger capacity, when a data node becomes
deficient, we may borrow several elements from a nearest sibling that has excess ele-
ments. For example, when c¢=10, a deficient data node will have 4 elements and its
nearest sibling may have 10. We could borrow 3 clements from the nearest sibling
thereby balancing the occupancy in both data nodes to 7. Such a balancing is expected
to improve performance.

When we delete the element with key 80 from the B*-tree of Figure 11.13 (a), the
middle child of D becomes deficient. We check its nearest right sibling and discover that
this sibling has only [¢/2] elements. So, the 2 data nodes are combined into one and
the in-between key 82 that is in the parent index node D deleted. Figure 11.13 (b) shows
the resulting B™-tree. Notice that combining two data nodes into one requires the dele-
tion of a data node from the doubly linked list of data nodes. Note also that in the case
of a disk resident BY -tree, the just performed deletion requires us to write out one altered
data node (the middle child of D) and one altered index node (D).

As another example for deletion, consider deleting the element with key 32 from
the B*-tree of Figure 11.12 (b). This element is in the middle child of C. Following the
deletion, the middle child becomes deficient. Since its nearest sibling has only [c¢/2]
elements, we cannot borrow from it. Instead, we combine the two data nodes deleting
one from its doubly linked list and delete the in-between key (30) in the parent. Figure
11.14 (a) shows the result. As we can see, the index node C now has become deficient.
When an index node becomes deficient, we examine a nearest sibling. If the examined
nearest sibling has excess keys, we balance the occupancy of the two index nodes; this
balancing involves moving some keys and associated subtrees as well as changing the
in-between key in the parent. For our example, the in-between key 20 is moved from A
to C, the rightmost key 16 of B is moved to A, and the right subtree of B moved to C.
Figure 11.14 (b) shows the resulting B*-tree.

As a final example, consider the deletion of the element with key 86 from the B*-
tree of Figure 11.12 (b). The middie child of E becomes deficient and is combined with
its sibling; a data node is deleted from the doubly linked list of data nodes and the in-
between key 84 in the parent also is deteted. This results in a deficient index node E and
the configuration of Figure 11,15 (a). The deficient index node E combines with its
sibling index node D and the in-between key 80 to get the configuration of Figure 11,15
(b). Finally, the deficient index node F combines with its sibling A and the in-between
key 40 in its parent G. This causes the parent G, which is the root, to become deficient.

Bt.Trees 557

10

Ezo 40

10

{b} 80 deleted from (a)

Figure 11.13: Deletion from a B*-tree

The deficient root is discarded and we get the B -tree of Figure 11.12 (a). In the case of
a disk resident B*-tree, the deletion of 86 would require us to write to disk one altered
data node and 2 altered index nodes (A and D),

EXERCISES

I. Intothe B -tree of Figure 11.11 insert elements with keys 5, 38, 45, 11 and 81 (in
this order). Use the insertion method described in the text. Draw the B -tree fol-
lowing each insert.

40
A F
20 80
B C D
10 16 70 84
(a) C is deficient
G
40
A F
16 80
B C D
10 20 70 84

(b} After borrowing from B

Figure 11.14: Stages in deleting 32 from the B*-tree of Figure 11.12 (b)

B¥-Trees 559

A
20
B
10 161
A
20
B
10 | 186

40

]

G

70

(a) E becomes deficient

40

30

70

80

(b) F becomes deficient

F

80

D &
F

D

Figure 11.15: Stages in deleting 86 from the B*-tree of Figure 11.12 (b)

Provide a high-level description (similar to Program 11.4) of the -algerithm to .
insert into a B*-tree.

Suppose that a B*-tree whose height is # is disk resident. How many disk accesses
are needed, in the worst case, to insert a new element? Assume that each node
may be read/written with a single access and that we have sufficient memory to
save the &4 nodes accessed in the search phase so that these nodes don’t have to be
re-read during the bottom-up node splitting phase.

From the Bt -tree of Figure 11.12 (b) delete the elements with keys 6, 71, 14, 18,
16 and 2 (in this order). Use the deletion method described in the text. Show the
B*-tree following each delete.

Provide a high-level description (similar to Program 11.4) of the algorithm to
delete from a B -tree.

Suppose that a B -tree whose height is # is disk resident. How many disk accesses
are needed, in the worst case, to delete an element? Assume that each node may
be read/written with a single access and that we have sufficient memory to save the
h nodes accessed in the search phase so that these nodes don’t have to be re-read
during the bottom-up borrow and combine phase.

Discuss the merits/demerits of replacing the doubly linked list of data nodes in a
B tree by a singly linked list.

Program B*-tree functions for exact and range search as well as for insert and
delete. Test all functions using your own test data.

REFERENCES AND SELECTED READINGS

B-trees were invented by Bayer and McCreight. For further reading on B-trees and their
variants, see ‘‘Organization and maintenance of large ordered indices,”” by R. Bayer and
E. McCreight, Acta Informatica, 1972; The art of computer programming, Vol. 3, Sorting
and Searching, Second Edition, by D. Knuth, Addison Wesley, 1997; *“The ubiquitous
B-tree,”” by D. Comer. ACM Computing Surveys, 1979; and ** B trees,”” by D. Zhang, in

Tandbook of data structures and applications, D. Mehta and S. Sahm editors, Chapman
& Hall/CRC, 2005.

